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ABSTRACT 

The problem of generating random Toeplitz correlation matrices is considered. 
Several methods are proposed, of which the most promising, as determined by both 
computational complexity and spectral randomness, seems to be that based on the 
characteristic function of random discrete probability measure. A number of inter- 
esting theoretical issues are recorded for further investigation. This report follows 
an earlier one devoted to general random correlation matrices. In both cases the 
intent is to use such matrices to simulate random data for the testing of certain 
group-theoretic signal processing algorithms. 



TABLE OF CONTENTS 

ACKNOWLEDGEMENTS iii 

ABSTRACT v 

LIST OF ILLUSTRATIONS ix 

LIST OF TABLES ix 

1. INTRODUCTION 1 

2. THE METHODS 3 

3. NUMERICAL EXPERIENCE 11 

4. LOOSE ENDS AND OPEN QUESTIONS 17 

4.1 Approximation of Toeplitz Correlation Matrices 17 

4.2 Length of Random Vector in Method 2 17 

4.3 Random Probability Distributions 18 

4.4 Other Issues in Method 3 19 

4.5 Effect of the Toeplitz Projection 19 

4.6 Toeplitz RCMs with Random Spectrum 20 

4.7 Further Simulation and Power Studies 20 

5. SUMMARY 23 

REFERENCES 24 

Vll 



LIST OF ILLUSTRATIONS 

Figure 
No. Page 

3-1 Frequency Distribution of Minimum Eigenvalues: Random Toeplitz Method 3 14 

3-2 Frequency Distribution of Minimum Eigenvalues: Random Toeplitz Method 2 15 

LIST OF TABLES 

Table 
No. Page 

2-1 Correlation Matrices with Indefinite Toeplitz Projections 8 

2-2 Empirical Failure Rate of RCM to Project onto TRCM 9 

3-1 K-S Test Statistics for Minimum Eigenvalue of TRCM 13 

3-2 Neyman N2 Statistic Summary for TRCM 16 

IX 



1.   INTRODUCTION 

The following is intended as a sequel to our earlier report on random correlation matrices [11]. 
All this work is ultimately motivated by eventual application to the testing and comparison of 
certain signal processing algorithms, specifically those defined by group transforms and filters, and 
intended for such second order tasks as data compression and decorrelation, and Wiener filtering. 
The earlier report, particularly its summary, contains further details on these applications. 

The basic idea is that a random correlation matrix (RCM) is to be interpreted as the covariance 
matrix of a random, or 'average,' signal. The latter is conceived as a random vector, whose 
components all have an equal variance (here taken as unity). This vector arises, in turn, from 
sampling and quantizing a continuous signal. If the latter can be reasonably modeled as a stationary 
stochastic process, then the resulting covariance matrix of the samples will have a Toeplitz structure, 
that is, it will be Hermitian and have constant diagonals. Hence it can be fully specified by, for 
example, its first row. 

Our view is that a Toeplitz random correlation matrix (TRCM) represents an intermediate 
degree of statistical structure between general random signals as described by ROMs, and signals 
describable as outputs of very special models, such as linear stochastic difference equations. The 
latter result in autoregressive signal models of some finite order m, denoted AR(m). In our numer- 
ical studies of group - theoretic signal processing algorithms, we restrict to the cases m < 2. There 
is an interesting cluster of theoretical questions here, pertaining to the density of such signals and 
their matrices, which will be listed later in Section 4, along with other unresolved issues. 

The specific problem which we address below is that of generating TRCMs. As in the earlier 
report, we distinguish two aspects of this problem: analytical and computational. The latter refers 
to computer software whose implementation results in an output stream of pseudorandom TRCMs. 
We will also have a few remarks to make about some spectral distributions associated with our 
TRCMs, but not to the extent of those in [11]; most of the natural questions in this context are 
left to Section 4. 

The general topic of Toeplitz matrices and operators is extensively developed by now, and in 
no way encompassed by a few sources. Some general references are the books [10, 12] and articles 
[9, 19], but these already provide more background than is really necessary for present purposes. 

The subject of random correlation matrices as presented in this and the preceding report [11], 
and in several references listed there, is but one aspect of the much larger area of random matrices. 
As we see it, this area encompasses, in addition to the present topic, the asymptotics of the spectral 
distributions of large random matrices, given distributional information about the matrix entries, 
and the problem of sampling from various compact matrix groups (symmetric groups, orthogonal 
groups, etc.). Collectively, random matrix theory has a vast array of applications in the sciences 
(nuclear physics, biology), communications engineering (coding, encryption), statistics (simulation, 
projection pursuit, algorithm tests), and mathematics (random walks, spectral asymptotics, ergodic 
theory). The recent conference proceedings [16] gives an overview of many of these applications, 
along with considerable theory. The books [3, 18]  give, respectively, a physical and a mathematics 



perspective on random matrices, with emphasis on eigenvalue distributions. For the early work, 
emanating from the need to statistically model energy levels of complex nuclei, dating at least from 
E. Wigner (1957), see his survey article [21]. Finally, there are two Russian books by V. Girko 
(Kiev, 1975 and 1980) on random matrices and random determinants, respectively, which have not 
been available to the author. 



2.   THE METHODS 

In this section we will discuss five possible methods for defining TRCMs. The first, an attempt 

at extending the random Gram method of [11] for generating ROMs, is rejected as being infeasible. 

The second method, derived from the well-known structure of moving average processes, is simple 

and efficient, and was our initial choice. The third, which builds up a matrix from the character- 

istic function of a random probability distribution, is the most interesting theoretically, it can be 
reasonably efficient, and can give good spectral distribution properties, at least for small matrix 

size. The remaining two have various deficiencies of both a theoretical and practical nature that 

probably render them unsuitable for automatic use. Yet each of them involves interesting open 

questions, and thus it is felt that they are worthy of brief mention in the present context. 

Before detailing the five methods, let us be specific about what we are trying to do. For a 
fixed positive integer N we want a procedure for producing a stream of N x TV matrices of the form 

1     a      b     ...    c 

(2.1) 

a 1 a 
b a 1 

a 

c a 1 

each of which is, in addition, positive definite. The N- 1 free entries a, b, ... are to be deterministic 

functions of some random variables. In the real symmetric case, of course, we will have a = a, 

b = 6, ..., etc. For computer implementation we will expect to be able to reduce all randomness 
to pseudorandom samples from the univariate uniform or normal distributions. Any matrix of the 

form (2.1) constructed by some such procedure is by definition a TRCM. 

Method 1 This is based on the procedure extensively discussed in [11]. That procedure 

yields what were called there random Gram matrices. Namely, for fixed N, we select N random 

vectors V\,.. . ,Vjv independent and uniformly distributed on the unit sphere in the real space of N 

(or more) dimensions, and form the Gram matrix 

A = [(vi,Vj)} (2.2) 

General theory forces A to be almost surely positive definite and hence A is a correlation matrix, 

since 

(v„Vi) = |2 _ = 1, i = l,...,N. 

Extension of this method to the present Toeplitz case then reduces to the question of whether 
this further symmetry can be attained by some geometrical constraints on the mutual position of 

the vectors V{. For example, in the TV = 3 case, we would choose v\, v^ independent, and then t>2 at 



random from the unit sphere in the plane (vi -U3)1. This would guarantee that (i>i,t'2) = (V2.V3), 
and hence that the Gram matrix A in Equation (2.2) is Toeplitz. With a little more effort an 
analogous procedure could be developed for the N = 4 case, but we have not been able to obtain 
such an algorithm for general N. 

Method 2 This is based on the well-known formula for the autocorrelation function of 
a (stationary) moving average process. If {xt} is such a process, of order p, then there are constants 
co = 1, ci,..., Cp, such that Xt = Wt + C\Wt-\ + • • • + CpWt-p, where {wt} is a white noise process. 
It follows that 

P-\k\ 

cov(x1+fc,xt) = o-2 ^2 cjcj-\k\, (2-3) 
3=0 

for |fc| < p, and 0 otherwise. Here a2 is the variance of the noise terms wt; we may as well take 
cr = 1 for present purposes. The function of k defined by Equation (2.3) is the autocorrelation 
function of the process {xt}, up to normalization by the factor (I + c2 + • • • + ci), and, as such, is 
in particular a positive definite function on the group Z of integers. 

Now, by definition, this property of a function (p defined on Z_ is exactly that required for the 
matrix A defined by 

A = [4>(i-j)}, (2.4) 

to be a Toeplitz covariance matrix. Hereafter we will enforce the normalization <£(0) = 1, so that 
A is actually a correlation matrix. So, at this point we may say that a normalized positive definite 
function on Z_ will give rise to a Toeplitz correlation matrix of any order through the prescription 
of Equation (2.4), and that, for a fixed order, a simple way to obtain such functions is through the 
covariance formula (2.3). 

With this background we can now state a simple algorithm for generating real TRCMs: 

• Select matrix dimension N; 

• 

• 

Generate a vector (xi,..., ijv) from the uniform distribution on the unit sphere 
inRN; 

Define a function 4> on Z+ by </>(fc) = ]CjLi ^jxj+k with the convention that 
Xj = 0, j > N; 

• Define the associated correlation matrix C by C = [</>(|z — j\)]. 

We note that procedures for carrying out Step 2 above are discussed in [11, Section 5.1] and, 
in greater depth, in [6, Section 5.4]. Some spectral properties of this method are given in the next 
section. 



Method 3 We continue with the theme of using positive definite functions to generate 
Toeplitz correlation matrices according to Equation (2.4). Hence we will permit an interest in 
generating complex Hermitian Toeplitz correlation matrices, as displayed in Equation (2.1). (If 
real Toeplitz correlation matrices are required, then the real parts of the eventual complex matrices 
may be taken; doing so will not alter the spectrum.) For this it is sufficient to have a procedure for 
generating positive definite functions on the group R of real numbers. Of course, there is a slight 
case of 'overkill' in this approach since such a function <f> will produce infinitely many matrices of 
the desired sort, and of any dimension N, by the formula 

C=[<f>(ti-tj)}, (2.5) 

where {ti} C R,i,j = I,.. •, N, and we would want the work required to specify <p to be somehow 
scaled to the size of N. 

We make use of Bochner's theorem which states that each continuous normalized positive 
definite function is the characteristic function of a probability distribution on R. That is 

4>{X) =  f eMdP(t), (2.6) 
JR. 

where P(») is a distribution function on R, or, equivalently, a probability measure on (the Borel 
subsets of) R. Hence, via the correspondence P —></>—> C, we see that a method for generating 
TRCMs will follow from any method that randomly selects a probability measure P on R. 

Such a method would seem to involve us with the concept of a probability measure over the 
(enormous!) space U.(R) of all probability measures on R. In fact, such measures have been 
introduced in the context on nonparametric Bayesian statistical analysis by T. Ferguson in 1973- 
74, and termed Dirichlet processes. (Actually, the concept of a random probability measure with 
fixed, bounded support, e.g., [0,1], identified with the corresponding distribution function, goes 
back at least 10 years earlier [7].) To engage in a substantial discussion of these would constitute 
a further case of 'overkill' in the present context. So let us just say that Dirichlet processes can 
be parameterized by the set of finite measures on R, that is, measures of the form 0 = tp,t > 
0, pell(R). If Dp is the Dirichlet process corresponding to such a /3, then for any partition R = 
B\U.. .UB/t, the random vector [DQ(B\), ..., Dp(Bk)} has the Dirichlet distribution with parameters 
(/3(Bi),..., 0(Bk))- In particular, we can say that E(Dp) = p(= t_1/3) . A basic survey article is [8] 
with other early work by C. Antoniak, D. Blackwell, and J. MacQueen. There have been sporadic 
developments since then associated with such authors as S. Dalai, J. Sethuramen, R. Tiwari, inter 
alia. Some of this work involves the concept of an exchangable sequence of random variables. 

One key result due independently to several of the early authors is that a pell(R) chosen 
at random from a Dirichlet process is almost surely discrete. A particularly nice constructive 
specification of a Dirichlet process was given in [2]. It is based on abstract 'Polya urn scheme' 
(drawing balls of various colors from an urn, with a prior distribution on the colors; infinitely many 
colors allowed), and yields approximating measures of the form 



VN = 0^(0 +6(h)+ ... + 6(tN)), (2.7) 

with c^ = 0(R) + N, and 8(t) = the point measure concentrated at teR. It is clear that such mea- 
sures could be rather easily simulated on a computer. From there, the resulting /z/v is substituted 
for P in Equation (2.6), thereby defining the function (p which, in turn, is used in Equation (2.5) 
to define a Toeplitz correlation matrix C (with some particular choice of points <,). 

We have not carried out this program although it appears to be a very interesting project, 
particularly because of the likely theoretical realtionships between various spectral properties of the 
resulting TRCMs and the probabilistic structure of the random measures /i/v that might thereby 
be suggested. 

Instead, we offer the following ad hoc algorithm for generating a discrete random probability 
measure P, which is then used in the usual way to define a Toeplitz correlation matrix: 

• Select matrix dimension TV; 

Select an integer L > N, and a positive number a; • 

Generate a random point (pi,.. • ,PL) from the unit simplex, so that 
Pi > 0,        Epi = 1; 

Generate a random point (s\,... ,SL) from the centered multivariate normal 
distribution with L x L covariance matrix = O~

2
IL', 

• Define P = pi6(s\) + ... 4- PL6(SL) i 

• 

• 

• Define <t> from Equation (2.5), and finally C from Equation (2.4) with U — i 
there. 

The choice of the integer L in the second step above is important, as too large or too small a 
value causes a distinctly nonrandom distribution of eigenvalues. From our numerical work reported 
in the next section, it appears that L = 37V is a good choice. Note that L > N is necessary for 
positive definiteness of C. The choice of a is less crucial; ae[5N, ION] seems to be effective. 

A procedure for carrying out the third step above was discussed in [11, Section 4.1]; it reduces 
to taking pi to be the ith spacing in a sample of size L — 1 from the standard uniform t/[0,1] 
distribution. 

Method 4 This is based in the geometric notion of orthogonal projection in matrix 
space. We consider, in the real or complex case respectively, the real ordered vector space of real 
symmetric or complex Hermitian N x N matrices. Let us call this space XN and denote its linear 
subspace of all Toeplitz matrices of the form (2.1) by T/v- Equipped with the usual Hilbert - 
Schmidt inner product 

(A,B) = tr(AB*), (2.8) 



XN becomes a real Hilbert space, and we can contemplate the operation of orthogonal projection 
of XN onto the subspace T/v- Let us denote this operation by 

A->AT, AeXpi- (2.9) 

It turns out to be easy to compute this projection because of the presence of an obvious orthogonal 
basis for T/y. Namely, if we specify a Toeplitz symmetric or Hermitian matrix by giving its first 
row, then the basis is given by the standard unit vector basis for /?A in the real case, and these 
vectors plus y/ — 1 times these vectors in the complex case (omitting (1,0, ...,0)' in this case). 
Thus 

dim(Tiv) = 
N,        real case 

2N - 1,   complex case. 

If we examine the nature of the projection operation by computing the Fourier coefficients of 
a matrix in XN, AT is obtained by averaging each diagonal. Thus, for instance, if N = 4, and 

a e h I ' 

b f k 
c 9 

d 

then 

AT 

oc    0    7    6 

oc   /?   7 

oc    (3 
ex 

with oc= (a + b + c + d)/4, (3 = (e + f + p)/3, -y = (h + fc)/2, and 6 = 1. 

It follows that if we start with a correlation matrix CeX^, its Toeplitz projection CT will 
again be a correlation matrix, provided that it has no negative eigenvalues. Unfortunately, this 
need not be the case. Table 2-1 below exhibits for N = 4, 5, correlation matrices in XN, their 
Toeplitz projections, and a negative eigenvalue for each of the latter. Thus we cannot conclude that 
a correlation matrix necessarily projects onto a Toeplitz correlation matrix (surprisingly, however, 
we were unable to find a counterexample for TV = 3). 

In spite of this somewhat disappointing discovery, an interesting empirical phenomenon occurs 
in this context, one that seems worthy of further investigation and explanation. Namely, the 
empirical frequency of the outcome (correlation matrix with indefinite Toeplitz projection) tends 
rather rapidly to 0 with increasing values of N. Evidence for this statement is summarized in 
Table 2-2 below. The underlying experiment was conducted by generating, for fixed N, several 
hundred RCMs of Gram type, C = TT*, with T an N x (7V + 1) matrix with row vectors distributed 



TABLE 2-1 

Correlation Matrices with Indefinite 

Toeplitz Projections 

N = 4 

C cT min a (Cj) 

1.0 .697-.709-.911 
1.0  -.747-702 

1.0    .611 
1.0 

1.0.187-.705-.911 

-.117 

N = 5 

1.0 .252-.168-.493-.904 
1.0  -.614   .583-.239 

1.0  -.613-.203 
1.0   .353 

1.0 

1.0-.155 .206-.366-.904 

-.144 

independently and uniformly over the sphere SN in RN+1. The resulting matrices were then 
projected onto T/v and their eigenvalues computed via IMSL routine EIGRS, an eigen-program 
designed for real symmetric matrices. 

These findings seem rather curious and deserving of further study. We note that the set T(Ar) 
of real N x N correlation matrices is a compact convex set of dimension N(N - l)/2. The fact that 
this is rapidly increasing with TV suggests that perhaps we do not have a sufficiently large sample 
size for N > 16 in Table 2-2 to be able to conclude much about the 'true' probability that an N x N 
RCM has a Toeplitz correlation matrix as its projection. But the fact that these projections can 
occasionally fail to be positive definite means that the following simple algorithm for generating 
TRCMs cannot be guaranteed failproof: 

• Generate a RCM C; 

• Return CT- 

For this reason it cannot be recommended for numerical work. 

Method 5 As discussed at some length in [11], one natural criterion for a class of 
RCMs to be 'truly random' is that the associated class of spectra be uniformly distributed over the 
simplex SN — {^i > 0 : SA* = N} of appropriate dimension. We will discuss some tests of such 
randomness for the TRCMs produced by Methods 2 and 3 in the next section. But first we want 
to take note of a recently proposed algorithm which might permit a direct solution of the problem 
of generating TRCMs with random spectrum. 



TABLE 2-2 

Empirical Failure Rate of RCM to 

Project onto TRCM 

N = 3 

No. Trials No. Failures Failure Rate 

500 0 .000 
4 500 11 .022 
5 500 8 .016 

8 500 5 .010 
16 500 0 .000 
24 300 0 .000 
32 200 0 .000 

Since it is easy to sample randomly (i.e., uniformly) from the simplex SN, the issue quickly 
reduces to the possibility of constructing a Toeplitz correlation matrix with a given spectrum. In 
general (for N > 5) it is unknown if this problem always has a solution; this is the 'inverse Toeplitz 
eigenproblem.' Nevertheless, a recent article by D. Laurie [13] offers a numerical procedure which, 
in spite of the lack of a convergence proof, is claimed to solve this problem in practice, in fact, to 
exhibit quadratic convergence. 

Let {\i} C R be a tentative spectrum of a real symmetric Toeplitz matrix, and set A = 
diag[Ai,...,Xff], If T is such a matrix then there must be an orthogonal matrix Q such that 
T = QAQ* or, equivalently, Q*TQ = A, a diagonal matrix. Laurie's algorithm involves a succession 
of alternate orthogonal diagonalizations of a symmetric Toeplitz matrix, followed by a new choice 
of Toeplitz matrix so that its diagonal, under the current orthogonal basis, agrees with A. This 
latter step amounts to solving an N x N linear system, arising from use of the basis vectors for 
the subspace T/v discussed earlier under Method 4. Some simplifications are possible due to the 
reciprocal structure of the eigenvectors of a Toeplitz matrix. Various Toeplitz starting values are 
suggested. 

In spite of the alleged rapid convergence properties of this procedure, it still seems like a lot 
of work to undertake to obtain TRCMs, with a fair potential for round-off accumulation. For 
this reason we have not attempted to program and operate this method. We have included it in 
this discussion because it does present, granting convergence and round-off control, a method for 
producing TRCMs with random spectrum. We remark that the inverse Toeplitz eigenproblem has 
been raised in an earlier RCM context by Marsaglia and Olkin [15]. 



3.   NUMERICAL EXPERIENCE 

In this section we summarize some computer experiments with Methods 2, 3, and 4 of the 

previous section. There is clearly any number of questions that one can raise concerning the distri- 

bution of various spectral functions of TRCMs for a specific probabilistic generating mechanism. 

However, the study of such questions was never our goal for undertaking this work. Rather, as 

discussed in the introductory section, we are primarily interested in a fast and reliable method for 

generating TRCMs with a nicely dispersed spectrum, that is, TRCMs whose spectrum is more or 
less uniformly distributed over the simplex S^. 

At the end of the previous section we noted that Laurie's algorithm when combined with a 
generator for sampling from the uniform distribution over 5^ provides the most direct conceptual 
solution of this problem, yet appears not to be 'fast,' relative to the other methods. So what we 

really want to see now is whether some of the other, faster, methods can be said to yield TRCMs 
with a random spectrum. 

How might we try to decide, absent a definitive theorem, whether a given class of TRCMs has 

a random spectrum? This is a matter that was discussed at some length in our earlier report [11]; 

however, the central issues will be briefly recalled next. 

First, we say that an N x N random correlation matrix A has a random spectrum if its spectrum 
o{A), viewed as a point in the simplex SAT, is uniformly distributed over S^. Now, one way to 

obtain this distribution is by means of the spacings determined by a sample from the standard 
uniform distribution on the interval [0,1]. Namely, if u^ < ... < U(AT_I) are the order statistics 
of a random sample drawn from U[0,1], and we put U(0) = 0, Uim = 1, then the spacings of this 

sample are defined by 

Si = u{i) - ttfj.i), i <i < N. 

The spacings are positive numbers (with probability one), and sum to unity. As noted in [11], it 

can be proved that the vector N(s\,... ,SN) is uniformly distributed over Syv- 

Now suppose given, for some fixed N, a sample of size n of N x N TRCMs generated by 
some particular procedure; for example, by Method 2 or 3. For each matrix C in the sample we 
compute its spectrum (T(C). There are now (at least) two general types of tests that can be applied 

to test the null hypothesis that a{C) is uniformly distributed over S^. The first type consists of 
computing a functional f(a(C)) of the spectrum whose distribution, under the null hypothesis, is 

known. The second type involves a transformation T : SN —• [0,1]; we evaluate T(a(C)) obtaining 
a finite subset of [0,1] and test that this sample is from U[0,1]. (Transformations of SN onto other 

simplicial regions, and tests against uniformity there are also possible; one such transformation is 

simply projection on the first N — 1 coordinates.) 

11 



Examples of the first type of test are given by choosing the spectral functions / as 

/(Ai,...,Ajv)    =    max(Ai), or 

=    min(A,), or (3.1) 

=      y/(X( + ... + \%). 

These functions are, respectively, ||C||, ||C-1||, and \\C\\p (the Frobenius norm of the matrix C). 
An example of the second type of test is given by choosing the transformation T as T( Ai,..., A;v) = 
(XI,...,XN-I), where 

Xi    =    Xi/N, 

x2    =   xi + X2/N, (3.2) 

iJV-l    =    X/v_2 + A(Ar_i)/./V. 

We see that 0 < xi  < x2  <  . • •  < XJV-I  <  ^ and that the associated spacings are given by 
sk = Afc/7V, 1 < k < N. 

Under the null hypothesis Ho of a random (uniform) spectrum, each of the random variables 
defined by Equation (3.1) has a distribution about which much is known; see the discussion in [11, 
Sec. 4]. In particular, the distribution of ||C_1|| is available in closed form: 

Pr{\\C~1\\>x) = {l-x)N-\        0<x<l, (3.3) 

while the other two distributions have closed-form asymptotic expressions. 

If, on the other hand, we elect to utilize the transformation T : (A) —• (x) defined by Equation 
(3.2), then we will arrive at n samples (x) which, under the null hypothesis, are each drawn from 
U[0,1]. Each of these may then be subjected to a goodness-of-fit test for uniformity, of which there 
are many. Some fraction of these will presumably pass such a test, and we will then have to decide 
whether this fraction is large enough so as not to reject HQ. 

A third alternative is to view each sample (x) as a single point in the cube [0, l]^-1. Under HQ 

this set of n points is a random sample from C/[0,1]N_1, and a multivariate goodness-of-fit test for 
uniformity could be applied. This approach is really more definitive than the one just discussed but, 
especially for large N, would require much larger sample sizes than what are presently available. 

How are we to choose among this multitude of plausible tests? Classical statistical theory 
suggests that we consider power. But this too is a multi-layered task. Variables here include, 
besides the different tests, sample size and alternative hypotheses. That is, different tests will 
exhibit different powers against different types of alternatives, and as the sample size varies. It is 
certainly not our intent here to engage in a serious study and ranking of the many possible tests 
for uniformity of spectrum. Rather we shall just report, as a rough guide, results from two such 
tests in the case of Methods 2 and 3. 

12 



We first consider the test based on the least eigenvalue which, under the null hypothesis of 
uniform spectrum, has the distribution given by Equation (3.3). From each of the two methods 
for generating TRCMs, we obtain a sample of size n = 100, for TV = 5, 10, and 20, compute 
the spectrum, and then the empirical distribution function of the least eigenvalue. This is then 
compared with the theoretical distribution in a Kolmogorov Smirnov one-sample test. 

In the case of TRCMs generated by Method 2, this test decisively rejected uniformity of 
spectrum. The K-S test statistic is highly significant, as shown by the values on the top line 
of Table 3-1. The problem is that the least eigenvalue is too large, as can be seen in the case 
TV = 10 from Figure 3-1. It displays the empirical and theoretical distributions, and also indicates 
that the average least eigenvalue = 0.2596, with a sample standard deviation of 0.1383. Under 
the null hypothesis, the expected value of the least eigenvalue is I/TV = 0.1, here, with vari- 
ance = (N — l)/N2(N + 1) = 0.00818, here. Hence the sample average should be approximately 
iV(0.1,0.0000818) distributed, which is clearly incompatible with the data. 

TABLE 3-1 

K-S Test Statistics for Minimum 

Eigenvalue of TRCM 

Method 2 

N = 5 N = 10 N = 20 

5.42 5.54 7.75 

Method 3 1.91 1.96 2.05 

The case of TRCMs generated by Method 3 is more ambiguous, partly because of the choice 
of the parameters L and o. Certainly there are 'bad' choices of these parameters. We have only 
mildly tried to optimize this choice: the data reported in the lower half of Table 3-1 is based on 
the case L = 3iV and a = 7iV. We see that the K-S statistic is still significant (values > 1.63 are 
significant at the 1% level). But the sample mean is only about 2a away from its mean under 
the null hypothesis. Overall, this case presents a much less emphatic rejection of uniformity that 
associated with Method 2. See Figure 3-2 for comparison. 

Our second test involves the use of Neyman's statistic N2. The theory of this test is available 
in several sources, for example [19]. In general, there is a sequence {Nk : k = 1,2,..} of statistics 
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STAND. DEV. = 0.1383 

RANDOM VECTOR 

LENGTH = 10 

1 I I I I I L 
0.0      0.1        0.2       0.3       0.4       0.5       0.6       0.7       0.8       0.9       1.0 

EIGENVALUE (min) 

Figure  3-1.    Frequency  distribution  of minimum  eigenvalues:    Random   Toeplitz 
Method 2. 

that can be used to test the hypothesis of uniformity on [0,1] against an alternative density of the 
form 

f(x) = cexp \ 1 4- ^2 bjlj{x) \ , 

where the lj are Legendre polynomials, and c is a normalizing constant whose precise value depends 
on {bj}. The null hypothesis is HQ : bj = 0, for all j, or, equivalently, 

H0:Y,b2j=0- 

The Neyman statistic Nk = v\ + ... + v\, where 

1  n 

v, - v/~2Jj(Xi), 
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and (x{ : i — 1,... , n) is the sample. It follows that when k = 2, iV*2 is a combination of the sample 
mean and variance and thus has an intuitive appeal. It is known that each Nk is asymptotically 
distributed as x2(fc), and that tests based on Nk, which result in rejection of the null hypothesis 
for large values of Nk, are consistent and asymptotically unbiased. In practice, the x2(s) approx- 
imation to 7V2 is quite accurate for n > 20; for small n, upper tail percentage point tables are 
available. 

1.0 

0.9 -                        ./ 

0.8 

0.7 // 
> I 
O ;" / 
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tij    0.6 ~~              t i => ;' / 
O ; / 
HI 
DC    0.5 —      ; / NUMBER OF DATA 
u. 

;  1 
POINTS = 100; ORDER 

OF MATRICES = 10; 
0.4 ! 1 AVERAGE MIN. 

EIGENVALUE = 0.1187, 
0.3 11 STAND. DEV. = 0.0770 t 

SIGMA = 70.0, NPQS = 30 
0.2 -j-f 

0.1 

n n 1           " "1  
0.0      0.1        0.2       0.3       0.4       0.5       0.6       0.7       0.8       0.9       1.0 

EIGENVALUE (min) 

Figure 3-2.    Frequency  distribution  of minimum  eigenvedues:    Random   Toeplitz 
Method 3. 

We computed the Neyman statistics N2 for the same batches of TRCMs as were tested using 
the least eigenvalue statistic. The results are summarized in Table 3-2 below. For each of Methods 2 
and 3, and each dimension N = 5, 10, and 20, we give the average and standard deviation of the 
100 JVys computed from each TRCM, and also the empirical percentage of the sample whose AT2 - 
value exceeded the .01 significance level. This level, for the cases N = 5, 10, and 20 is, respectively, 
9.64, 9.26, and 9.23. 

The main inference to be drawn from this data is that as the matrix size ./V increases beyond 
10, we observe ever more pronounced deviations from uniformity, so we would have to reject the 
hypothesis of uniformity for TRCMs generated by either of these methods for N > 10. 
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TABLE 3-2 

Neyman N2 Statistic Summary for TRCM 

Method 2 

N = 5 N = 10 N     20 

Ave. 

S.D. 

Sig. 
0.01 

1.62 

0.86 

0% 

4.16 

1.94 

3% 

9.10 

3.30 

39% 

Method 3 

Ave. 

S.D. 

Sig. 
0.01 

2.62 

0.99 

0% 

5.53 

1.69 

3% 

11.50 

2.52 

83% 

Our conclusion, based on both tests, is that for N < 10, Method 3, with proper choice of its 
parameters L and c, can be said to produce TRCMs with uniform spectrum. It may be possible, for 
larger N, to adjust these parameters in Method 3, so as to pass these tests for uniform spectrum. 
Failing that, and insofar as a random spectrum is deemed desirable, we must fall back on the as 
yet untried Method 5. 
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4.   LOOSE ENDS AND OPEN QUESTIONS 

In this final section we collect together a number of remarks pertinent to the foregoing mate- 

rial, and unresolved issues that appear worthy of further study. These latter issues are certainly 

of varying degrees of difficulty, running as they do from further simulation work to rather deep 
theoretical issues. 

4.1 Approximation of Toeplitz Correlation Matrices 

Given that our primary interest in TRCMs is that they serve as the covariance matrices of 

sections of stationary stochastic processes, it is conceivable that simple models for such processes 
might yield an adequate supply of TRCMs. Of course, the terms 'simple' and 'adequate' must be 

carefully specified. 

Let us say that 'simple' means an autoregressive process of some order m, which we denote 

by AR(m). The cases m < 2 are of particular interest. When m = 1, the corresponding TV x TV 

correlation matrices Cp are indexed by the real parameter p, \p\ < 1, and the eigenvalues of Cp are 
known [17] to be of the form 

1-p2 

1 — 2p cos u>k + pz 

where the LJ^ must be obtained numerically from a nonlinear equation. When m = 2, the eigenvalues 

are not similarly available in closed form, but can still be indexed by a pair of real parameters. For 
instance, correlation matrices of the form given by Equation (2.4), with 

4>(t) = exp(— ex \t\)cos2irl3t, 

can occur. (In m = 1 case, the cosine term would be absent.) 

By 'adequate' we might mean either the degree of density or coverage of the class of all TV x TV 
Toeplitz correlation matrices by those corresponding to the AR(m) processes, or the degree of 
coverage of the eigenvalue simplex S^ by the spectra of these matrices. Can either of these degrees 
of coverage by correlation matrices of AR{m) be quantified as a function of m? And if so, is it 
small enough to permit usage of these special matrices for the intended applications? But the real 

problem may be that, even if the previous questions can be answered affirmatively for some m < TV, 
it will prove to be overly difficult to actually generate the correlation matrices corresponding to the 

appropriate AR(m) processes, relative to the methods of Section 3. 

We remark that rational approximation in the frequency domain may be a plausible approach 

to the first question above. 

4.2 Length of Random Vector in Method 2 

In this method the key step was a random draw from the unit sphere in R . It is possible to 

draw instead from the unit sphere in a larger space RL, L > TV, and still define the function 4> as 
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before. One might ask how the spectral properties, in particular the spectral distribution of the 
resulting TRCM, depend on this parameter L. A brief look at this problem has suggested that the 
distribution of eigenvalues does not become more uniform, contrary to both hope and expectation. 

4.3    Random Probability Distributions 

This probably is the most interesting theoretical concept to arise in the present study. In 
the context of Method 3 we have discussed one possible approach to this problem, namely, the 
use of the Dirichlet process. We noted that conventional methods as well as our ad hoc approach 
yielded discrete probability measures. Here we want to mention another, more recent, procedure 
for selecting a probability measure on R at random that, with probability one, yields absolutely 
continuous measures with an analytic density. So, in a sense, we are at the opposite extreme from 
the Dirichlet distributions. 

This procedure is due to Chen and Rubin [4, 5], and is based on the use of an orthonormal 
basis for L2{R). (Other measure spaces besides (R, Leb.) could be used, but as these are taken 
more abstract, some of the special properties known for the resulting densities, such as analyticity, 
existence of moments, etc. may be lost.) If {4>n} is such a basis, and b = {bn} a sequence of scalars 
such that Yl^n = 1 (notation: bsS(l2)), then the function: 

f(X) = |X>n<M*)|2 (4-1) 
n 

is easily seen to be a probability density function (pdf) on R. It follows that any procedure for 
selecting sequences b randomly from the sphere S(l2) will lead to a random pdf via Equation (4.1). 

Of course there is a difficulty here in that the Hilbert space I2 is of infinite dimension and 
hence its spheres are noncompact. Further, there is no rotationally invariant probability measure 
on S(l2), although there are finitely additive measures on the algebra of cylinder sets of I2 which 
are rotationally invariant, for instance, the canonical Gauss measure. But in order that a cylinder 
set measure can be extended to be a countable additive measure on a Borel set of I2, its covariance 
operator must be nuclear [1]. This means that its spectrum is composed of eigenvalues converging 
rapidly enough to zero so as to form a summable sequence. Hence the associated measure is highly 
anisotropic. 

Actually, there is a second difficulty here besides the conceptual one associated with the idea of 
a uniform distribution on the sphere S(l2), and that concerns the necessity to approximate infinite 
dimensional vectors by finite dimensional ones. That is, in practice the sum in Equation (4.1) 
must be truncated. Fortunately, sums of generally not unreasonable length suffice to approximate 
'most' pdfs, as shown in [4]. There remains the task of numerical simulation of random draws from 
S(l2) to achieve such approximations. One scheme suggested in [4] yields an expected dimension 
of about 50. One can imagine also other schemes for doing the simulations. 

The point to be made here is that we have here a new method for producing random pdfs 
which in turn will lead via Method 3 to TRCMs, and we do not have any information at this time 
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as to how the spectral properties of these matrices behave. Note, however, a practical drawback 
to the use of these densities for generating TRCMs in that much more computational effort must 
be expended in order to compute their Fourier transforms, in comparison with the case of discrete 
probability measures. 

A final comment is to recall that orthonormal series have been long used as one of several 
popular approaches to nonparametric probability density estimation. That is, an estimate of an 
unknown pdf / is constructed by using a given sample to form estimates of a finite number of 
Fourier coefficients of / with respect to the given basis. This method dates from work of N. 
Chencov, 1962, with further contributions by S. Schwartz, G. Watson, R. Kronmal and M. Tarter, 
and D. Bosq, inter alia. Possibly familiarity with this approach to density estimation served as 
some motivation for the Chen-Rubin approach to density construction. We note that while their 
densities are nonnegative by definition, as they should be, the conventional pdf estimators can well 
lack this property (particularly for small data samples), a well-known shortcoming of the orthogonal 
series method. 

4.4    Other Issues in Method 3 

There are several parameters that can be varied: the integer L (number of point masses), the 
variance parameter a (spread of the points about the orgin), and the points {t{} themselves. We 
have used tj = j in Equation (2.5), but other choices are possible, and might lead to improved 
(more uniform) spectral distributions. Also, the set {tj} might be randomized. 

There seems to be a distinct lack of theoretical results about these specific questions, although 
there is certainly no lack of theory of symmetric Toeplitz matrices. We have in mind especially 
results about the asymptotic behavior of eigenvalues. Such theorems might help shed light on the 
spectral behavior of large TRCMs generated by either of Methods 2 or 3. 

If the urn scheme of Equation (2.7) is used to build up discrete Dirichlet-distributed probability 
measures, how do the resulting TRCMs behave? 

4.5    Effect of the Toeplitz Projection 

Recall that the projection operation C —» Cj described in Method 4 could not be guaranteed 
to 'work,' in the sense of always returning a (Toeplitz) correlation matrix CT whenever a correlation 
matrix C was input. Nevertheless it 'usually' works. This phenomenon seems worthy of further 
understanding and quantification. Is it possible to assign a probability to the statement I,

CT£T(N) 

ifCelW? 
More generally, one might inquire if there are any general facts about changes in spectrum 

induced by projections in the space of square matrices with the Hilbert-Schmidt inner product of 
Equation (2.8). A particular question is what the Toeplitz projection does to a class of RCMs with 
uniform spectrum, at least in those cases where it preserves the positivity. 
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Apropos of this last question, there arises a certain practical matter: how does one produce 
a sequence of RCMs with a uniform spectrum? Note that this is not a theoretical difficulty — 
one begins with any positive definite matrix with a desired spectrum in S./v and then sequentially 
adjusts the diagonal entries via a sequence of Givens rotations. This method is discussed in [11], 
with alternate references provided, and it is noted that the IMSL subroutine GGCOR provides 
a commercial package for this very purpose (this subroutine will also make random draws from 
the orthogonal group O(N)). The problem is that, as the subroutine documentation warns, the 
spectrum of the final matrix may differ from the initial input spectrum. In fact, this problem seems 
to be very real. In 100 trials each for N = 3, 5, 8, with an initial spectrum drawn randomly from 
the uniform distribution U(SN), we observed an empirical failure rate of 0.3% (resp., 7%, 18%). 
That is, these percentages of the trials resulted in nonpositive definite output matrices. 

4.6    Toeplitz RCMs with Random Spectrum 

We have seen that, especially for matrices of order N > 10, we do not have as yet a method 
of producing Toeplitz RCMs with a random (uniform) spectrum other than Method 5, with which 
we have no direct experience. We have mentioned the basic questions of existence and convergence 
associated with this method, and the probable difficulties with implementation and round-off. 

Another basic question which needs to be recorded in this context is whether we should expect 
the existence of TRCMs with random spectrum. Our numerical work leads us to accept this 
hypothesis for small orders (N < 10), but is otherwise inconclusive. But, in any event, there is no 
existence theorem, and the connection between such a result, if true, and the inverse eigenvalue 
problem for Toeplitz correlation matrices should be explored. Certainly, if the inverse eigenvalue 
problem is solvable, and the convergence of Method 5, or some other, is validated, then we will 
have a source of TRCMs with random spectrum. And, in the converse direction, if TRCMs with 
random spectrum, can be constructed, then, with arbitrarily high probability, we can find a Toeplitz 
correlation matrix with a given spectrum. (Sketch of argument ... Let 0 < pn ] 1, and Vn be a 
decreasing sequence of open sets in the simplex S^ with nVn = {Ao}. Then with probability > pn 

there is a Toeplitz correlation matrix Tn with a(Tn)eVn. By compactness of the set of iV x iV 
correlation matrices, there is a convergent subsequence of {Tn} with limit T, and by standard 
results on spectral perturbations, a(T) = {Ao}. The probability that the first m of the Tn exists is 
p\ .. .pm and, if the increase of pn to 1 is sufficiently rapid, this partial product will coverage to a 
number arbitrarily close to 1.) 

4.7     Further Simulation and Power Studies 

Failing theoretical advances, there is always the possibility of further numerical work along 
the lines reported in Section 3. This might take the form of either additional tests for uniformity 
or, more interestingly, studies comparing the power of various tests for uniformity relative to a 
particular alternative. In particular, is there a uniformly most powerful test for uniformity? 
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As an example we looked at a statistic of Lohrding [14] which was shown to have favorable 
power against various alternatives with respect to other popular test statistics such as Kolmogorov- 
Smirnov and Cramer-von Mises. In the case where we are testing an ordered sample {x\,..., TA'_ I } 
for uniformity on [0,1], the test statistic in question is 

r = (d1 + ..- + djv_1)/(;v-i)) 

where 

dk = \xk - mk\/ck; 

here mk and c\ are the mean and variance of the /cth order statistic from a sample of size TV — 1 
from £/[0,1]. Use of this statistic for TRCMs generated from Methods 2 and 3 basically reconfirmed 
results reported in Section 3 for the other two tests, by leading to rejection of the null hypothesis 
for N > 10. 
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5.   SUMMARY 

The theory and practice of random Toeplitz correlation matrices is more subtle than that of 
random correlation matrices. This is to be expected given the corresponding greater mathemat- 
ical difficulties with Toeplitz matrices and operators vis-a-vis Hermitian matrices and operators. 
Starting from this background, we prepared this report with two goals in mind: to raise several the- 
oretical issues concerning the spectral behavior of Toeplitz RCMs, and to present some numerical 
experience with certain special cases. 

In fact, a variety of unresolved theoretical questions arose in the course of this work, and these 
are collected together in Section 4. The most interesting of these appear to be (1) the spectral 
behavior of Toeplitz RCMs generated from the characteristic functions of various random proba- 
bility measures; (2) the connection between the inverse eigenvalue problem for Toeplitz correlation 
matrices and the concept of Toeplitz RCMs with random (uniform) spectrum; and (3) the behavior 
of the matrix spectrum under the Toeplitz projection operator. 

The numerical results shed varying degrees of light on some of the theoretical questions, as we 
have tried to indicate. Insofar as the matter of computer generation of Toeplitz RCMs is concerned, 
we are left with Method 3 (based on the characteristic functions of random discrete probability 
measures) as the method of choice. This method is not quite as efficient as Method 2 (based on the 
autocorrelation function of a random discrete moving average process), but seems to yield more 
uniformly distributed spectra. But the tests of both methods for uniformity fail for moderately 
large matrix sizes (N > 10), and so that area remains open too. 
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